Atlas Copco
Refrigerant Air Dryers
FD series (6-4000 l/s, 13-8480 cfm)

Sustainable Productivity
Why dry your compressed air?

Compressed air is used in a wide variety of industrial applications. Wherever it is used, compressed air must be clean and dry. Containing solid, liquid and gaseous contaminants, untreated compressed air poses a substantial risk as it can damage your air system and end product. Moisture, one of the main components of untreated air can cause corrosion in pipe work, premature failure of pneumatic equipment, product spoilage and more. An air dryer is therefore essential to protect your systems and processes.

Limit the risks of moisture

When the air that surrounds us is compressed, its water vapor and particle concentration increases dramatically. For example, compressing ambient room air to 7 bar(a)/100 psig increases the vapor content or humidity by a factor of around 8, and subsequent cooling forms liquid water. The amount of water depends on the specific application. Compressed air can actually contain three forms of water: liquid water, aerosol (mist) and vapor (gas). An efficient means of removing water from compressed air is therefore vital.

ISO quality air standard (ISO 8573-1:2010)

The quality of compressed air used in industrial processes is specified in the international standard ISO 8573-1. Untreated compressed air typically contains 3 types of contaminants: dirt, water and oil. The Quality Classes specify the maximum allowed limits.

ISO 8573-1:2010

<table>
<thead>
<tr>
<th>ISO 8573-1:2010</th>
<th>Dirt</th>
<th>Water</th>
<th>Oil</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Maximum number of particles per m³</td>
<td>Mass concentration mg/m³</td>
<td>Vapor pressure dewpoint °C</td>
</tr>
<tr>
<td>0</td>
<td>As specified by the equipment user or supplier and more stringent than Class 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>≤ 20000 ≤ 600 ≤ 10</td>
<td>≤ 100</td>
<td>≤ -70°C/≤-94°F</td>
</tr>
<tr>
<td>2</td>
<td>≤ 40000 ≤ 600 ≤ 100</td>
<td>≤ 100</td>
<td>≤ -40°C/≤-4°F</td>
</tr>
<tr>
<td>3</td>
<td>≤ 50000 ≤ 1000 ≤ 1000</td>
<td>≤ 1000</td>
<td>≤ -30°C/≤-22°F</td>
</tr>
<tr>
<td>4</td>
<td>≤ 10000 ≤ 3000 ≤ 10000</td>
<td>≤ 3000</td>
<td>≤ -20°C/≤-8°C</td>
</tr>
<tr>
<td>5</td>
<td>≤ 10000 ≤ 10000</td>
<td>≤ 5000</td>
<td>≤ -10°C/≤-14°F</td>
</tr>
<tr>
<td>6</td>
<td>≤ 10000 ≤ 10000</td>
<td>≤ 5000</td>
<td>≤ 0°C/≤32°F</td>
</tr>
<tr>
<td>7</td>
<td>≤ 10000 ≤ 10000 ≤ 100000</td>
<td>≤ 10000</td>
<td>≤ -5°C/≤41°F</td>
</tr>
<tr>
<td>8</td>
<td>≤ 10000 ≤ 10000 ≤ 100000</td>
<td>≤ 10000</td>
<td>≤ +5°C/≤46°F</td>
</tr>
<tr>
<td>9</td>
<td>≤ 10000 ≤ 10000 ≤ 1000000</td>
<td>≤ 10000</td>
<td>≤ +10°C/≤51°F</td>
</tr>
<tr>
<td>X</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Moisture in the air can be particularly problematic, causing:
- Corrosion of compressed air piping
- Damages & malfunction of air powered equipment.
- Compressed air leakages due to corroded pipes.
- Poor paint quality, deterioration of electrostatic painting processes.
- Deteriorated end product quality.

What is a refrigerant dryer?

A refrigerant dryer uses a refrigerant circuit and heat exchanger(s) to pre-cool air, refrigerate it to condense out moisture vapor, and then re-heat the air to prevent pipe sweating downstream. Refrigerant dryers can lead to a pressure dewpoint (PDP) as low as +3°C/+37.4°F for many applications where there is a need for dry air. They can be used at different pressures and consume no processed compressed air.

Main types of refrigerant dryers on the market

- **Direct expansion dryers**
 - Fixed speed non-cycling dryers run continuously irrespective of varying load conditions.
 - Fixed speed cycling dryers shuts down at lower loads to save energy and restart when required.
- **Variable speed dryers** are on the cutting edge of energy efficiency. They automatically change the speed of the refrigerant compressor to adapt to varying loads.
- **Thermal mass dryers** have a heat exchanger which typically contains a liquid thermal mass to store cold energy. Thermal mass dryers shut down when there is no or little air, or at low loads to save energy.
- **Digital scroll dryers** have a refrigerant compressor that loads/unloads according to the demand.

Typical working principle of direct expansion dryers

Air circuit

1. **Air-to-air heat exchanger**: Incoming air is cooled down by the outgoing dry cold air.
2. **Air-to-refrigerant heat exchanger**: The air is cooled to the required dewpoint by the refrigerant circuit. The water vapor condenses into water droplets.
3. **Integrated water separator**: The moisture is collected and evacuated by the electronic drain.

Refrigerant circuit

1. **Refrigerant compressor**: Compresses the gaseous refrigerant to a higher pressure.
2. **Regulation device**: The hot gas bypass valve regulates the dryer to prevent freezing at lower load conditions.
3. **Refrigerant condenser**: Cools the refrigerant so that it changes from a gas to a liquid.
4. **Refrigerant filter**: Protects the expansion device from harmful particles.
5. **Thermostatic expansion valve**: The expansion process reduces the pressure and cools the refrigerant further.
6. **Liquid separator**: Ensures that only refrigerant gas enters the compressor.
Atlas Copco’s FD refrigerant dryers

Based on years of experience in the industry, Atlas Copco has chosen to incorporate direct expansion technology with cycling, non-cycling and Variable Speed variants in its range.

Protecting your reputation and production

Compressed air entering the air net is always 100% saturated. When it cools, this moisture will condense, causing damage to your air system and finished products. Removing moisture from compressed air with a dewpoint as low as +3°C/+37.4°F, Atlas Copco’s FD refrigerant dryers provide the clean, dry air you need to expand the life of your equipment and ensure the quality of your end product. In addition, FD dryers comply with the most stringent environmental regulations.

Keeping your production up and running

Atlas Copco’s FD refrigerant dryers are designed in-house, tested using the most stringent methods (at ambient temperatures up to 50°C/122°F) and manufactured on a very advanced production line. Separate components undergo severe endurance tests while the unique design of the heat exchanger significantly improves the dryer lifetime. Advanced control functions ensure dry air at all conditions and prevent freezing at low loads. FD dryers meet or exceed the international standards for compressed air purity and are tested according to ISO 7183:2007.

Driving down energy costs

Atlas Copco’s refrigerant dryers incorporate a range of energy-saving features that will cut your carbon footprint and reduce costs. Incorporating unique heat exchanger technology and Saver Cycle Control, the FD ensures a low pressure drop of typically below 0.2 bar/2.9 psi and minimal energy consumption. The integrated Variable Speed Drive (VSD) technology offers extra energy savings by automatically tuning the energy input to the precise demand. All this ensures a low lifecycle cost.

Easy installation and long maintenance intervals

FD dryers have a small footprint thanks to an innovative all-in-one design. Delivered ready for use, installation is straightforward, minimizing costly production downtime. FD dryers come as all-in-one packages including an electronic no-loss drain, integrated OSD condensate treatment (optional) and spin-on DD/DD filters (optional). For easy installation against the wall, the in- and outlet connections on some models are positioned on top of the unit.

Assuring your peace of mind

Through continuous investment in our competent, committed and efficient service organization, Atlas Copco ensures superior customer value by maximizing productivity. With a presence in over 170 countries, we offer professional and timely service through interaction and involvement. Uptime is ensured by dedicated technicians and 24/7 availability.

Low environmental impact

Fully compliant with ISO 14001 standards and Montreal Protocol regulations, FD dryers use CFC-free refrigerants (R134a, R410a, R404a) to prevent any damage to the earth’s ozone layer. FD dryers have an ozone depletion potential (ODP) of zero and are enclosed in a sound suppression canopy to reduce the noise levels, making FD dryers among the most environmentally friendly and quietest in their class.
FD 5-95 & FD 120-285: Superior productivity

1 Electronic no-loss condensate drain
- Level sensor senses the level of the condensate and opens the drain, preventing any loss of compressed air when condensate is drained.
- Equipped with backup manual drain as standard and drain alarm (FD 120-285).

2 High-efficiency heat exchanger
- Counter-flow compact brazed plate (FD 5-50) or aluminum (FD 60-285) heat exchanger, with air-to-air side for optimum cooling efficiency.

3 Fan switch
- Reduces energy consumption and optimizes the pressure dewpoint at very low temperatures.

4 Robust and compact design
- Forklift opening for easy transport.
- Inlet and outlet located at the top (can be optional) for easy installation.
- Easily removed front and side panels for full access.
- Optional: IP54, DD/PD filters (with pressure drop monitoring for FD 120-285) and OSD (FD 60-285 only) integrated condensate treatment.

5 Optimum performance and safety in all conditions
- Hot gas bypass valve prevents freezing at lower loads.
- R134a piston compressor with high coefficient of performance (FD 5-95) or extremely reliable R410A rotary compressor (FD 120-285) provide the best performance for each size while having minimum environmental impact. Capillary tubes cope with all conditions—no moving parts for extra reliability.
- FD 120-285 also offer condenser with louvered fin technology for improved performance in dusty environments.

6 Advanced control and monitoring system
- The controller displays the pressure dewpoint (PDP) and relative humidity.
- Setting allows dryer to cycle or not (Saver Cycle Control algorithm) and restart or not after power failure.
- Remote alarm through voltage-free contact.
- The controller offers additional features such as energy-saving flow switch algorithm, alarm history, standard remote visualization (Ethernet plug) and communication extension possibility (FD 120-285).
FD 310-4000: Superior productivity

1. High-efficiency heat exchanger
 - Counter-flow on both air-to-air and air-to-refrigerant sides for efficient heat transfer. As the outgoing air is reheated, it protects the outlet piping against pipe sweating.
 - Unlike some other dryer designs, a separate pre-filter is not required. This results in a low pressure drop. The design ensures a smooth air-flow which makes the dryer less sensitive to contamination.

2. Integrated water separator
 - Low velocity condensate separator with high separation efficiency even in low flow-conditions.
 - Reliable and effective condensate evacuation from the separation chamber via the no-loss condensate drain.

3. Electronic no-loss condensate drain
 - Level sensor senses the level of the condensate and opens the drain, preventing any loss of compressed air when condensate is drained, which is the case with timer-based drains.

4. User-friendly state-of-the-art Elektronikon® controller
 - Monitoring of all parameters to ensure maximum reliability for your installation.
 - Fitted inside a real IP54 cubicle for easy cabling and safety.

5. Refrigerant circuit
 - Designed to perform reliably under extreme conditions of 50°C/122°F ambient temperatures and 60°C/140°F inlet temperatures*. This is due to the sizing of key components such as the heat exchanger, refrigerant compressor, valves etc.

6. Hot gas bypass valve
 - Prevents freezing at lower loads.

7. Filters
 - For processes requiring higher levels of filtration, Atlas Copco offers integrated DD and PD filters (optional on FD 310-510).

* The type of controller may vary depending on the model.

* Some models might require flow correction.
Supreme energy efficiency

When purchasing a refrigerant dryer, the main focus is usually on the initial cost. What is mostly overseen is that this only represents approximately 10% of the lifecycle cost, the rest being taken up by energy, maintenance and installation costs. Of these, direct and indirect energy costs (pressure drop) are the most important.

Lifecycle cost

<table>
<thead>
<tr>
<th>Indirect energy costs (on average 38%)</th>
<th>Direct energy costs (on average 43%)</th>
</tr>
</thead>
</table>

Indirect energy costs

Indirect energy costs are related to the extra energy your air compressor will consume to overcome the pressure drop of the air dryer. By design, Atlas Copco FD refrigerant dryers offer a low pressure drop and efficient heat transfer – both of which contribute to a reduction of the indirect energy costs.

Low pressure drops

If a refrigerant dryer has a high internal pressure drop, the compressor needs to run at a higher pressure. As illustrated in the example, this wastes energy and increases operating costs. Atlas Copco has therefore put considerable efforts into minimizing pressure drops in its dryers. A low pressure drop of typically below 0.2 bar/2.9 psi at full flow is ensured by the heat exchanger technology, an integrated low velocity water separator, and generously sized components.

Efficient heat transfer through unique heat exchanger technology

The FD dryer uses a counter flow heat exchanger on both the air-to-air and air-to-refrigerant side. Compared to a cross flow heat exchanger, the counter flow design results in a more efficient heat transfer and stable temperatures. This significantly lowers energy consumption.

Direct energy costs

Direct energy costs are related to the power that the dryer consumes. Atlas Copco’s FD dryers incorporate a variety of state-of-the-art technologies such as Saver Cycle Control and Variable Speed Drive. These features result in further savings on energy costs, depending on your air consumption profile.

Saver Cycle Control

To help you save energy, Atlas Copco FD dryers are able to adapt their working cycle to the real load by continuously monitoring and comparing the ambient temperature and the pressure dewpoint. When there is less heat load, the refrigerant compressor stops and power consumption is significantly reduced.

Variable Speed Drive (VSD)

The VSD controller incorporated in certain FD refrigerant dryers matches the energy consumed to the actual compressed air used. This significantly reduces energy consumption – by as much as 70% compared to conventional dryers. It works by varying the speed of the compressor and ensuring a stable dewpoint. In this way the speed of the refrigeration compressor can be matched to inlet conditions, resulting in lower energy consumption at reduced loads.

Flow switch

If the compressor is unloaded for some time, the flow switch shuts down the refrigerant compressor automatically, typically after ten minutes, saving energy.

Reduce your total lifecycle cost by up to 50% with Atlas Copco’s FD dryers

| Up to 60% savings on Indirect energy costs | Up to 70% savings on Direct energy costs |
Atlas Copco’s Elektronikon® controls and monitors your FD refrigerant dryers to ensure optimal productivity and efficiency at your site.

User-friendly interface
Available in 32 languages, this graphical 3.5-inch high-definition color display with pictograms and LED indicators for key events is easy to use. The keyboard is durable to resist tough treatment in demanding environments.

Comprehensive maintenance display
Valuable items of information displayed include the ServicePlan indicator and preventive maintenance warnings.

Control and monitoring
Internet-based visualization*
The Elektronikon® system monitors and displays key parameters such as dewpoint and inlet temperature, etc. Internet-based visualization of your dryer is possible by using a simple Ethernet connection.

AIRConnect™
AIRConnect™ is an optional advanced remote monitoring package that offers complete analysis and accurate management. It is fully customizable to meet specific customer needs, from simple alarm notification via email or SMS to visualization via fieldbus, LAN or internet, including advanced reporting services.

Optimize your system
With the FD, Atlas Copco provides an all-in-one standard package incorporating the latest technology in a built-to-last design. To further optimize your FD’s performance or to simply tailor it to your specific production environment, optional features are available.

Scope of supply

<table>
<thead>
<tr>
<th>Options</th>
<th>FD 5-95</th>
<th>FD 120-285</th>
<th>FD 210-510</th>
<th>FD 610</th>
<th>FD 780-1180</th>
<th>FD 1250-2000</th>
<th>FD 2400-4000</th>
</tr>
</thead>
<tbody>
<tr>
<td>GENERAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High efficiency coalescing filters</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>General purpose coalescing filters</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Integrated OSD oil/water condensate separator</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Anchor pads</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>MOTOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VSD control</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>Saver Cycle Control</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>Control panel protection to IP23</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>Control panel protection to IP54</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>OTHER OPTIONS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flow switch</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
<tr>
<td>Automatic hot gas bypass valve</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Electronic hot gas bypass valve</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
<td>▲</td>
</tr>
</tbody>
</table>

* Standard | ▲ | Optional | ▲ | Not available

* Not applicable for the lower range controllers.
Technical specifications

FD series

50 Hz versions

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Minimum size</th>
<th>Maximum size</th>
<th>Minimum flow</th>
<th>Maximum flow</th>
<th>Pressure drop</th>
<th>Power consumption</th>
<th>Maximum working pressure</th>
<th>Compressed air connections</th>
<th>Dimensions</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(W x H x D)</td>
</tr>
<tr>
<td>FD 1010</td>
<td>1040 x 490 x 810</td>
<td>1580 x 1150 x 1000</td>
<td>0.17 x 2.47</td>
<td>7.6 x 10.2</td>
<td>14 x 203</td>
<td>ANSI 4</td>
<td>1040 x 490 x 810</td>
<td>0.17 x 2.47</td>
<td>7.6 x 10.2</td>
<td>14 x 203</td>
</tr>
<tr>
<td>FD 1250</td>
<td>1245 x 580 x 910</td>
<td>1780 x 1350 x 1200</td>
<td>0.17 x 2.47</td>
<td>7.6 x 10.2</td>
<td>14 x 203</td>
<td>ANSI 4</td>
<td>1245 x 580 x 910</td>
<td>0.17 x 2.47</td>
<td>7.6 x 10.2</td>
<td>14 x 203</td>
</tr>
<tr>
<td>FD 1600</td>
<td>1640 x 760 x 1060</td>
<td>2200 x 1580 x 1440</td>
<td>0.25 x 3.64</td>
<td>9.3 x 12.47</td>
<td>14 x 203</td>
<td>ANSI 8</td>
<td>1640 x 760 x 1060</td>
<td>0.25 x 3.64</td>
<td>9.3 x 12.47</td>
<td>14 x 203</td>
</tr>
<tr>
<td>FD 2000</td>
<td>2040 x 940 x 1180</td>
<td>2700 x 1720 x 1660</td>
<td>0.23 x 3.3</td>
<td>4.3 x 5.77</td>
<td>14 x 203</td>
<td>ANSI 6</td>
<td>2040 x 940 x 1180</td>
<td>0.23 x 3.3</td>
<td>4.3 x 5.77</td>
<td>14 x 203</td>
</tr>
</tbody>
</table>

60 Hz versions

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Minimum size</th>
<th>Maximum size</th>
<th>Minimum flow</th>
<th>Maximum flow</th>
<th>Pressure drop</th>
<th>Power consumption</th>
<th>Maximum working pressure</th>
<th>Compressed air connections</th>
<th>Dimensions</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(W x H x D)</td>
</tr>
<tr>
<td>FD 1250</td>
<td>1245 x 580 x 910</td>
<td>1780 x 1350 x 1200</td>
<td>0.25 x 3.64</td>
<td>9.3 x 12.47</td>
<td>14 x 203</td>
<td>ANSI 8</td>
<td>1245 x 580 x 910</td>
<td>0.25 x 3.64</td>
<td>9.3 x 12.47</td>
<td>14 x 203</td>
</tr>
</tbody>
</table>

Reference conditions:
- Performance data per ISO 1799-2:2007
- Ambient temperature: 30°C, 80°F
- Inlet temperature: 26°C, 79°F
- Inlet pressure: 7 bar(1)/102 psig

Refrigerant types:
- R410A
- R404A
- R407C

- **FD series**

Water-cooled versions:

- FD 510
- FD 310
- FD 410
- FD 610

FD 1250-4000:
- R404a
- FD 120-1010:
- R410a

Power consumption

- kW (horsepower)
- @ 50 Hz
- @ 60 Hz

Dimensions

- L (length)
- W (width)
- H (height)
- mm (millimeters)
- in (inches)

Weight

- kg (kilograms)
- lb (pounds)
Driven by innovation
With more than 135 years of innovation and experience, Atlas Copco will deliver the products and services to help maximize your company’s efficiency and productivity. As an industry leader, we are dedicated to offering high air quality at the lowest possible cost of ownership. Through continuous innovation, we strive to safeguard your bottom line and bring you peace of mind.

Building on interaction
As part of our long-term relationship with our customers, we have accumulated extensive knowledge of a wide diversity of processes, needs and objectives. This gives us the flexibility to adapt and efficiently produce customized compressed air solutions that meet and exceed your expectations.

A committed business partner
With a presence in over 170 countries, we will deliver high-quality customer service anywhere, anytime. Our highly skilled technicians are available 24/7 and are supported by an efficient logistics organization, ensuring fast delivery of genuine spare parts when you need them. We are committed to providing the best possible know-how and technology to help your company produce, grow, and succeed. With Atlas Copco you can rest assured that your superior productivity is our first concern!